Lightdrum—Portable Light Stage for Accurate BTF Measurement on Site
نویسندگان
چکیده
We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0 ∘ to 75 ∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples.
منابع مشابه
A Portable Setup for Fast Material Appearance Acquisition
A photo-realistic representation of material appearance can be achieved by means of bidirectional texture function (BTF) capturing a material’s appearance for varying illumination, viewing directions, and spatial pixel coordinates. BTF captures many non-local effects in material structure such as inter-reflections, occlusions, shadowing, or scattering. The acquisition of BTF data is usually tim...
متن کاملMulti-Sensor Scene Modeling Using Statistical Models for Bidirectional Texture Functions
This paper presents a novel approach to multi-sensor statistical modeling of bi-directional texture functions (BTF). Our proposed BTF modeling approach is based on (1) conducting an analytical study that relates a sensor resolution to the size and shape of elements forming material surface, (2) developing a robotic system for laboratory BTF data acquisition, (3) researching an application of th...
متن کاملRapid Material Appearance Acquisition Using Consumer Hardware
A photo-realistic representation of material appearance can be achieved by means of bidirectional texture function (BTF) capturing a material's appearance for varying illumination, viewing directions, and spatial pixel coordinates. BTF captures many non-local effects in material structure such as inter-reflections, occlusions, shadowing, or scattering. The acquisition of BTF data is usually tim...
متن کاملTowards Effective Measurement and Interpolation of Bidirectional Texture Functions
Bidirectional texture function (BTF) is acquired by taking thousands of material surface images for different illumination and viewing directions. This function, provided it is measured accurately, is typically exploited for visualization of material appearance in visual accuracy demanding applications. However, accurate measurement of the BTF is time and resources demanding task. While the sam...
متن کاملNew Method of Quality Control Test for Light and Radiation Field Coincidence in Medical Linear Accelerators
Introduction: The evaluation of X-ray and light field coincidence in linear accelerators as a quality control test is often performed subjectively, involving the manual marking of films and their visual inspection following the irradiation. Therefore, the present study aimed to develop an objective method for the performance of this test leading to the increased levels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017